

Reactions of tris(2,6-dimethoxyphenyl) arsine, tris(2,6-dimethoxyphenyl) stibine and tris(2,6-dimethoxyphenyl) bismuthine and their derivatives

Masanori Wada *, Shin-ichi Miyake, Shinji Hayashi, Hiroshi Ohba, Shin-ichi Nobuki, Shuichi Hayase, Tatsuo Erabi

Department of Materials Science, Faculty of Engineering, Tottori University, Koyama, Tottori 680, Japan Received 1 February 1995; in revised form 11 May 1995

Abstract

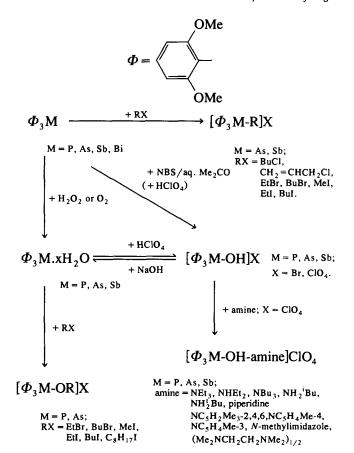
Tris(2,6-dimethoxyphenyl)arsine and tris(2,6-dimethoxyphenyl)stibine ($\Phi_3M(\Phi=2,6\text{-}(\text{MeO})_2\text{C}_6\text{H}_3$; M = As an Sb)) reacted with common alkyl halides (RX) to give [Φ_3M -R]X, while Φ_3 Bi was unreactive in benzene, or it decomposed in hot alcohols. The reactions of Φ_3M (As,Sb) with butyl bromide in acetonitrile were much faster than that of triphenylphosphine. Treatments of Φ_3M (P,As,Sb) with N-bromosuccinimide (NBS) gave [Φ_3M -OH]Br, while Φ_3 Bi decomposed to give 1-bromo-2,6-dimethoxybenzene. [Φ_3M -OH]Br are soluble in water, and the acidity decreased in the order M=P>As>Sb. Treatments of Φ_3M (As,Sb) with aqueous hydrogen peroxide gave the oxides as hydrates, Φ_3MO . xH_2O (x=1 for M=As and x=3 for M=Sb), while Φ_3B i was unreactive or decomposed. Φ_3PO was brominated by NBS to give $\Phi_3'PO$. H_2O ($\Phi_3'=3$ -Br-2,6-(MeO) $\Phi_3'=2$ C-(MeO) $\Phi_3'=2$ C-(Me

Keywords: Arsenic; Antimony; Bismuth; Phosphorus; Alkoxide; Amine

1. Introduction

As part of our systematic investigation on the chemistry of 2,6-dimethoxyphenyl derivatives such as tris(2,6-dimethoxyphenyl)phosphine (Φ_3P ($\Phi=2,6-(\text{MeO})_2\text{C}_6\text{H}_3$)) [1–3], we attempted to work on a series of its derivatives of group 15 elements. Tris(2,6-dimethoxyphenyl)arsine, tris(2,6-dimethoxyphenyl)stibine and tris(2,6-dimethoxyphenyl)bismuthine, (Φ_3M (M=As, Sb and Bi respectively)) have been prepared by Horner and Simons [4], but their chemical properties have not been explored. The reactions reported here are summarized in Schemes 1 and 2. Some of the preliminary results have been reported elsewhere [5,6].

2. Experimental details


2.1. Physical measurements

¹H and ¹³C NMR spectra were recorded for solutions in CDCl₃ or in CD₂Cl₂ using a JEOL model JNM-GX-270 spectrometer, and the representative ¹H and ¹³C NMR spectral data are summarized in Tables 1 and 2 respectively. IR spectra (Nujol mulls) were recorded using a Shimadzu FTIR-4200 spectrophotometer.

2.2. Preparation of starting materials

 $\Phi_3 P$ was prepared as described elsewhere [1], or it was kindly provided by K.I. Kasei Co., Ltd. $\Phi_3 PO$ [2], $\Phi_3 PS$ [7] and $[\Phi_3 P-SH]ClO_4$ [7] were prepared as previously reported.

^{*} Corresponding author.

Scheme 1. Reactions of Φ_3M (M = P, As, Sb or Bi) and their derivatives.

 Φ_3 As, Φ_3 Sb and Φ_3 Bi were prepared by analogous methods reported by Horner and Simons [4] with slight modification, as described below.

2.2.1. Φ_{3} As

The organolithium reagent Φ Li was prepared from 1,3-dimethoxybenzene (5.2 ml, 40 mmol), 15% n-hexane solution of n-butyllithium (25 ml, 40 mmol) and N, N, N', N'-tetramethylethylenediamine (about 0.1 ml) in dry diethyl ether (30 ml). The reagents were mixed at 0°C under argon, and the mixture was stirred at room temperature for 2 h to give a white suspension of Φ Li. Arsine trichloride (1.0 ml, 12 mmol) was added at 0°C, and the mixture was stirred at room temperature overnight. Methanol (20 ml) was added, and the mixture was concentrated to about a half volume under reduced pressure. The resultant white precipitates were filtered in air and were recrystallized from methanol to give

$$[\Phi_3 P-SH]ClO_4 + amine \longrightarrow [\Phi_3 P-SH-amine]ClO_4$$

 $amine = NEt_3, NHEt_2, NC_5H_4Me-3, NC_5H_4Me-4,$

NC₅H₂Me₃-2,4,6

Scheme 2. Reactions of $[\Phi_3 M-SH]ClO_4$ and amines.

white crystals of Φ_3 As with a 78% yield (melting point (m.p.), $162-164^{\circ}$ C (160° C [4])). Anal. Found: C, 59.38; H, 5.76. $C_{24}H_{27}$ AsO₆ calc.: C, 59.27; H, 5.59%.

2.2.2. Ф, Sb

In an analogous manner to the above using stibine trichloride (3.42 g, 15 mmol), Φ_3 Sb was obtained as white crystals with a 82% yield (m.p., 165–167°C (after recrystallization from methanol) (163°C [4])). Anal. Found: C, 53.83; H 5.36. $C_{24}H_{27}$ SbO₆ calc.: C, 54.06; H, 5.10%.

2.2.3. Ф, Ві

To a suspension of Φ Li, prepared as above, was added an ethereal solution (30 ml) of bismuth trichloride (4.73 g, 15 mmol) at 0°C under argon, and the mixture was worked up as above. The resultant precipitates were dissolved in acetone to remove inorganic impurities by filtration. To the filtrate was added water to give precipitates of Φ_3 Bi with a 78% yield. The analytical sample was obtained by recrystallization from 2-propanol with minimum heating (m.p., 155–157°C (128°C [4])). Anal. Found: C, 46.48; H, 4.54. $C_{24}H_{27}$ -BiO₆ calc.: C, 46.64; H, 4.39%.

2.2.4. Air oxidations of $\Phi_3 M$

Each solution of Φ_3 M (M = P, As or Sb) (0.3 mmol) in 2-propanol (15 ml) was heated at 80°C in air for 12 h, the solvent was removed under reduced pressure, and the residue was served for measurement of ¹H NMR spectra to show the relative Φ_3 M: Φ_3 MO. xH_2 O ratios as 8:92 (M = P), 17:83 (M = As) and 14:86 (M = Sb).

When Φ_3 Bi was heated in an analogous manner, it decomposed to give 1,3-dimethoxybenzene.

2.3. Reactions of $\Phi_3 M$ with alkyl halides

2.3.1. Reactions with alkyl iodides

A mixture of Φ_3 Sb (0.533 g, 1 mmol) and butyl iodide (0.3 ml) in benzene (10 ml) was stirred at room temperature for several hours to give precipitates of $[\Phi_3$ Sb-Bu]I with a 78% yield. The analytical sample was obtained by recrystallization from 2-propanol (m.p., 171–173°C). Anal. Found: C, 46.55; H, 5.09. $C_{28}H_{36}$ -IO₆Sb calc.: C, 46.89; H, 5.04%.

In analogous manners to the above, the following compounds were obtained.

 $[\hat{\Phi}_3 \text{As-Me}]\text{I:} 95\%$ yield; m.p., not observed below 235°C. Anal. Found: C, 47.59; H, 4.86. $C_{25}H_{30}\text{AsIO}_6$ calc.: C, 47.79; H, 4.81%.

[Φ_3 As-Et]I: 99% yield; m.p., 235°C (decomposed). Anal. Found: C, 48.55; H, 5.12. $C_{26}H_{32}$ AsIO₆ calc.: C, 48.62; H, 5.02%.

[Φ_3 As-Bu]I: 93% yield; m.p., 207°C (decomposed). Anal. Found: C, 50.20; H, 5.57. C₂₈H₃₆AsIO₆ calc.: C, 50.16; H, 5.41%.

[Φ_3 Sb-Me]I: 96% yield; m.p. 214°C (decomposed) Anal. Found: C, 44.36; H, 4.52. $C_{25}H_{30}IO_6$ Sb calc.: C, 44.47; H, 4.58%.

[Φ_3 Sb-Et]I: 94% yield; m.p., 205-207°C. Anal. Found: C, 45.15; H, 4.76. C₂₆H₃₂IO₆Sb calc.: C, 45.31; H, 4.68%.

 Φ_3 Bi was recovered with a 86% yield after heating in benzene containing ethyl iodide in a sealed glass tube for 15 h at 80°C.

2.3.2. Reactions with alkyl bromides

A mixture of Φ_3 Sb (0.533 g, 1 mmol) and butyl bromide (0.6 ml) in methanol (10 ml) was heated at

80°C in a sealed glass tube for 15 h. Volatile materials were removed under reduced pressure, and the residue was washed with benzene to give $[\Phi_3Sb-Bu]Br$ with a 86% yield (m.p., 142°C (decomposed)).

In analogous manners to the above, the following compounds were obtained.

 $[\Phi_3 As-Et]Br: 98\%$ yield; m.p., 237°C (decomposed).

 $[\Phi_3 As-Bu]Br: 99\%$ yield; m.p., 201°C (decomposed).

 $[\Phi_3 As-Et]Br: 92\%$ yield; m.p., 184°C (decomposed).

These compounds were characterized by ¹H NMR

Table 1 ¹H NMR spectral data for some 2.6-dimethoxphenyl derivatives ^a

Compounds	δ (ppm) [J_p (Hz)]					
	4-H b	3,5-H ^c	2,6-MeO d	Others		
Φ_3 As	7.12	6.44	3.47			
Φ ₃ Sb	7.13	6.44	3.47			
Φ₃Bi	7.11	6.59	3.45			
Φ ₃ AsO.H ₂ O	7.30	6.52	3.55			
Φ_3 SbO.3 H_2 O	7.35	6.63	3.71			
[Φ̃ ₃ P–OH]Br	7.48	6.58	3.61			
$[\Phi_3P-OH]ClO_4$	7.51	6.61	3.65			
$[\Phi_3 As - OH]X (X = Br or ClO_4)$	7.57	6.71	3.72			
$[\Phi_3 Sb-OH]X (X = Br or ClO_4)$	7.58	6.74	3.76			
Φ', PO.H, O	7.52 °	6.49	3.85 and 3.38			
[Φ_3 P-OH-NEt ₃]ClO ₄	7.31	6.51	3.50	3.01q[7], 1.22t[7]		
$[\Phi_3 As - OH - NEt_3]ClO_4$	7.42	6.61	3.58	2.72q[7], 1.12t[7]		
$[\Phi_3 P - SH - NEt_3]ClO_4$	7.25	6.50	3.53	3.16q[7], 1.33t[7]		
[Φ ₃ P-OH-NHEt ₂]ClO ₄	7.31	6.53	3.49	2.91q[7], 1.19t[7]		
$[\Phi_3 As - OH - NHEt_2]ClO_4$	7.43	6.62	3.60	2.56q[7], 1.07t[7]		
[Φ ₃ Sb-OH-NHEt ₂]ClO ₄	(7.45	6.69	3.71	2.70q[7], 1.03t[7]) °		
$[\Phi_3P-SH-NHEt_2]CIO_4$	7.27	6.52	3.53	2.97q[7], 1.23t[7]		
[Φ ₃ P-OH-NH ₂ ¹ Bu]ClO ₄	7.33	6.54	3.51	2.34d[8], 1.80m, 0.72d[7]		
[Φ ₃ As-OH-NH ₂ ⁱ Bu]ClO ₄	7.42	6.62	3.56	2.21d[7], 1.56m, 0.67d[7]		
[Φ ₃ P-OH-piperidine]ClO ₄	7.31	6.51	3.51	2.98br, 1.74br, 1.51br		
[Φ ₃ As-OH-piperidine]ClO ₄	7.42	6.62	3.57	2.75br, 1.59br, 1.45br		
[Φ ₃ As-Me]I	7.52	6.67	3.62	2.58s		
$[\Phi_3 Sb-Me]I$	7.53	6.68	3.66	2.15s		
$[\Phi_3 A_{S}-E_1]X (X = B_1 \text{ or } I)$	7.51	6.66	3.63	3.19q[7], 1.22t[8]		
$[\Phi_3 Sb-Et]X (X = Br or I)$	7.53	6.68	3.65	2.82q[8], 1.40t[8]		
$[\Phi_3 As - Bu]X (X = Cl, Br or I)$	7.51	6.65	3.63	3.14t[7], 1.42m(4H), 0.88t[7]		
$[\Phi_3 Sb-Bu]X (X = Cl, Br or I)$	7.53	6.68	3.66	2.78t[8], 1.61m, 1.43m, 0.89t[7]		
$[\Phi_3P-CH_2CH=CH_2]CIO_4$	7.52	6.62	3.61	5.63m(1H), 5.0m(2H), 3.95dd[18][7](2H)		
$[\Phi_3 As - CH_2 CH = CH_2]CIO_4$	7.50	6.64	3.63	5.71m(1H), 5.1m(2H), 3.93d[8](2H)		
$[\Phi_3Sb-CH_2CH=CH_2]CIO_4$	7.51	6.67	3.66	5.80m(1H), 5.1m(2H), 3.60d[8](2H)		
[Φ ₃ P-OMe]ClO ₄	7.56	6.63	3.62	3.77d[14]		
$[\Phi_3 As - OMe]I$	7.60	6.72	3.67	3.70s		
$[\Phi_3 P - OEt]X (X = Br, I \text{ or } ClO_4)$	7.57	6.65	3.63	4.07qn[7][7], 1.35dt[1][7]		
$[\Phi_3 As - OEt]X (X = Br \text{ or } I)$	7.58	6.71	3.67	3.88q[7], 1.28t[7]		
[Φ ₃ P-OBu]I	7.58	6.65	3.63	3.99dt[7][7], 1.67m[7], 1.39m[7], 0.92t[7]		
$[\Phi_3 As - OBu]X (X \approx Br \text{ or } I)$	7.58	6.71	3.67	3.80t[6], 1.61m[7], 1.37m[7], 0.89t[7]		
$[\Phi_3P-OC_8H_{17}]I$	7.58	6.65	3.63	3.97dt[7], 1.67m[7], 1.25br, 0.86t[7]		

^a In CDCl₃ or CD₂Cl₂ at 270 MHz; $\Phi = 2.6 \cdot (\text{MeO})_2 \cdot \text{C}_6 \cdot \text{H}_3$, $\Phi' = 3 \cdot \text{Br} \cdot 2.6 \cdot (\text{MeO})_2 \cdot \text{C}_6 \cdot \text{H}_2$; s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; dd, double doublet; dt, double triplet; m, multiplet; br, broad. The spectral data for $\Phi_3 \cdot \text{P}$ [1], $\Phi_3 \cdot \text{PO}$ [2], $\Phi_3 \cdot \text{PS}$ [7], $[\Phi_3 \cdot \text{P} - \text{SH}] \cdot \text{CIO}_4$ [7] and $[\Phi_3 \cdot \text{P} - \text{Me}] \cdot \text{I}$ [1] have been reported.

^b Triplet with $J_{\rm H} = 8-9$ Hz.

Doublet or double doublets with $J_{\rm H} = 8-9$ Hz and $J_{\rm P} = 5-6$ Hz.

d Singlet.

^e Suspension in CD₂Cl₂.

and IR spectra in comparison with those of the corresponding iodides.

2.3.3. Reactions with alkyl chlorides

A mixture of Φ_3 Sb (1 mmol) and butyl chloride (0.5 ml) in methanol (10 ml) was heated at 80°C in a sealed glass tube for 24 h. Volatile materials were removed under reduced pressure, and the residue was extracted with chloroform. Chloroform was removed under reduced pressure, and the residue was washed with benzene to give $[\Phi_3$ Sb-Bu]Cl_xH_2O with a 24% yield (calculate for x=0) (m.p., 101°C (decomposed). IR: ν (OH) 3300 cm⁻¹.

In an analogous manner to the above, $[\Phi_3 As -$

Bu]Cl .xH₂O was obtained with a 95% yield (calculate for x = 0) (m.p., 199–201°C) IR ν (OH) 3200 and 3290 cm⁻¹.

These compounds were characterized by ¹H NMR and IR spectra in comparison with those of the corresponding iodides.

A mixture of Φ_3 Sb (1 mmol) and allyl chloride (0.12 ml) in ethanol (10 ml) was heated at 60°C for 9 h. It was diluted with water (15 ml), and 1 M aqueous solution of sodium perchlorate (1.5 ml) was added to give precipitates of $[\Phi_3$ Sb-CH₂CH=CH₂]ClO₄ with a 79% yield (m.p., 191°C (decomposed (after recrystallization from ethanol)). IR: ν (ClO₄) 1100 cm⁻¹). Anal. Found: C, 47.80; H, 4.81. C₂₇H₃₂ClO₁₀Sb calc.: C, 48.13; H, 4.79%.

Table 2 ¹³C NMR spectral data for some 2,6-dimethoxphenyl derivatives ³

¹³ C NMR spectral data for some 2,6-dimethoxphenyl derivatives ^a				
Compounds	δ ^b (ppm) [J _P (Hz)]			
$\Phi_3 P$	116.5 [20], 162.4, 104.3 °, 128.3, 55.9			
Φ_3° As	- ^d , 162.7, 104.3, 128.3, 55.8			
Φ_3 Sb	- ^d , 162.6, 104.2, 128.3, 55.8			
Φ_3 Bi	- ^d , 164.4, 104.0, 128.9, 55.5			
Φ_3 AsO.H ₂ O	116.9? ^d , 161.7, 104.5, 132.1, 55.9			
Φ_3 SbO.3H ₂ O	119.6? ^d , 161.5, 104.3, 131.4, 55.8			
$[\Phi_3 P - OH]X$	- ^d , 162.6, 104.7 ^c , 136.3, 56.4			
$[\Phi_1 A_S - OH]X$ °	- ^d , 161.2, 105.1, 136.3, 56.6			
[Φ ₃ Sb-OH]X ^e	108.3? ^d , 162.2, 105.2, 136.7, 56.7			
Φ_3' PO.H ₂ O	122.7 [113], 160.8 and 160.2, 108.7 [10] and 108.3 [8], 135.9, 62.3 and 55.7			
$[\Phi_3 P - OH - NEt_3]CIO_4$	114.6 [117], 162.3, 104.6 °, 132.6, 55.8, 46.4, 8.4			
$[\Phi_3 As-OH-NEt_3]ClO_4$	114.8, 161.8, 105.0, 134.0, 56.2, 46.0, 9.3			
$[\Phi_3 P - SH - NEt_3]ClO_4$	116.1 [96], 161.6, 105.1 °, 131.3, 55.8, 47.2, 8.8			
$[\Phi_3P-OH-NHEt_2]ClO_4$	114.6 [119], 162.3, 104.9 °, 132.6, 55.9, 43.1, 10.7			
$[\Phi_3 As-OH-NHEt_2]ClO_4$	115.6, 161.5, 105.0, 133.1, 56.0, 42.9, 11.6			
$[\Phi_3 Sb-OH-NHEt_2]ClO_4$	(116.7, 161.7, 104.6, 133.5, 56.0, 43.7, 14.5) ^f			
$[\Phi_3 P-SH-NHEt_2]ClO_4$	115.9 [94], 161.6, 105.3 °, 131.6, 55.9, 43.6, 11.0			
$[\Phi_3P-OH-piperidine]ClO_4$	- ^d , 162.4, 104.8 ^c , 132.6, 55.9, 45.0, 22.5, 21.9			
$[\Phi_3 As - OH - piperidine]ClO_4$	115.1, 161.5, 105.0, 133.4, 56.1, 45.1, 22.7 (overlapped?)			
$[\Phi_3 As - OH - NH_2^{\dagger} Bu]ClO_4$	114.1, 161.8, 105.5, 134.3, 56.5, 48.5, 28.6, 20.1			
$[\Phi_3$ As-Me]I	105.6, 161.2, 104.9, 134.9, 56.4, 19.0			
$[\Phi_3 Sb-Me]I$	105.2, 162.4, 104.7, 135.4, 56.4, 7.5			
$[\Phi_3 As - Et]I$	104.6, 161.4, 104.7, 134.8, 56.3, 28.3, 8.7			
$[\Phi_3 Sb-Et]I$	104.3, 162.5, 104.6, 135.3, 56.4, 21.0, 9.4			
$[\Phi_3 As - Bu]I$	- ^d , 161.4, 104.7, 134.8, 56.3, 33.4, 26.1, 24.0, 13.7			
$[\Phi_3 Sb-Bu]I$	104.4, 162.4, 104.7, 135.3, 56.4, 26.8, 25.1 (overlapped?), 13.6			
$[\Phi_3P-CH_2CH=CH_2]CIO_4$	100.0 [98], 162.5, 104.6 °, 135.7, 56.0, 128.6 [8], 120.7 [16], 33.9 [59]			
$[\Phi_3 As - CH_2 CH = CH_2]CIO_4$	104.9, 161.4, 104.7, 134.9, 56.1, 128.4, 121.8, 38.4			
$[\Phi_3Sb-CH_2CH=CH_2]CIO_4$	- ^d , 162.4, 104.7, 135.4, 56.2, 129.1, 120.5, 31.5			
$[\Phi_3 P-OMe]ClO_4$	102.5 [122], 163.0, 104.7 °, 136.7, 56.3, 56.9 [9]			
$[\Phi_3 As-OMe]I$	107.0, 161.6, 105.2, 136.4, 56.7, 56.1			
$[\Phi_3 P - OEt]ClO_4$	103.1 [123], 162.9, 104.6 °, 136.5, 56.2, 67.3 [9], 16.1 [10]			
$[\Phi_3 As - OEt]I$	107.5, 161.5, 105.2, 136.2, 56.6, 65.0, 17.0			
$[\Phi_3$ As-OBu]I	107.4, 161.5, 105.1, 136.2, 56.5, 68.7, 33.4, 18.9, 13.8			

 $^{^{\}frac{3}{4}}$ In CDCl₃ or CD₂Cl₂ at 68 MHz; $\Phi = 2.6$ -(MeO)₂C₆H₃, $\Phi' = 3$ -Br-2,6-(MeO)₂C₆H₂; in the order of C-1, C-2, C-3,5, C-4, 2,6-MeO and others.

^b Data for Φ_3 PO [2], Φ_3 PS[7], $[\Phi_3$ P-SH]ClO₄ [7] and $[\Phi_3$ P-Me]ClO₄ [8] have been reported.

^c Doublet with $J_P = 6-10$ Hz.

^d Very weak or not detected.

 $^{^{}c}$ X = Br, ClO₄ or BF₄.

f Suspension in CD₂Cl₂.

In analogous manners to the above, the following compounds were obtained.

[Φ_3 P-CH₂CH=CH₂]ClO₄: 97% yield; m.p., not observed below 240°C (after recrystallization from ethanol). IR: ν (ClO₄) 1100 cm⁻¹. Anal. Found: C, 55.39; H, 5.61; Cl 6.25. C₂₇H₃₂ClO₁₀P calc.: C, 55.63; H, 5.53; Cl, 6.08%.

[Φ_3 As-CH₂CH=CH₂]ClO₄: 98% yield; m.p., not observed below 240°C (after recrystallization from ethanol). IR; ν (ClO₄) 1100 cm⁻¹. Anal. Found: C, 51.47; H, 5.16. C₂₇H₃₂AsClO₁₀ calc.: C, 51.73; H, 5.15%.

2.3.4. Rate measurement

Reaction rates were determined by conductimetry for solutions containing Ar_3M (0.01 M) and alkyl halide (0.20 M) kept in boiling chloroform bath at 61.2°C or boiling benzene bath at 83.5°C. Correlation coefficients were greater than 0.999, except for some very fast reactions with the half-lifetime less than 15 min. Pseudo-first-order rate constants obtained are given in Table 3.

2.4. Reactions of $\Phi_3 M$ with N-bromosuccinimide

2.4.1. Formation of $[\Phi_3 M-OH]X$ $(M=P, As or Sb; X=Br, ClO or BF_4)$

To a solution of Φ_3 As (0.486 g, 1 mmol) in acetone (10 ml, used as purchased) was added dropwise a solution of *N*-bromosuccinimide (NBS) (0.178 g, 1 mmol) in acetone (5 ml), and the mixture was stirred at room temperature for 1 h, resulting in white precipitates of $[\Phi_3$ As-OH]Br (yield 91%; m.p., 199°C (decomposed)). Anal. Found: Br, 13.4. $C_{24}H_{28}O_7$ AsBr calc.: Br, 13.7%. These precipitates were dissolved in water. An addition of 1 M aqueous sodium perchlorate (2 ml) resulted in the precipitation of $[\Phi_3$ As-OH]ClO₄ with an 80% yield after recrystallization from ethanol (m.p., not observed below 235°C). Anal. Found: C, 48.08; H, 4.90. $C_{24}H_{28}O_{11}$ AsCl calc: C, 47.82; H, 4.68%. IR; ν (OH) 3350; ν (ClO₄) 1100 cm⁻¹.

 $[\Phi_3 \text{As-OH}]\text{ClO}_4$ also could be obtained with an 80% yield by the reaction of $\Phi_3 \text{As}$ (1 mmol) and 30% aqueous hydrogen peroxide (0.25 ml, excess) in 2-propanol (30 ml), followed by addition of 60% aqueous perchloric acid (0.15 ml).

In analogous manners to the above, the following compounds were obtained.

 $[\Phi_3 P-OH]Br: 90\%$ yield; m.p., 164°C (decomposed).

[Φ₃P-OH]ClO₄: 93% yield; m.p., 230°C (decomposed) (after recrystallization from ethanol). Anal. Found: C, 51.37; H, 5.17; Cl, 6.24. $C_{24}H_{28}O_{11}ClP$ calc.: C, 51.58; H, 5.05; Cl, 6.34% IR: ν (OH) 3340; ν (ClO₄) 1100 cm⁻¹.

[Φ_3 P-OH]BF₄: 92% yield; m.p., 227°C (decomposed) (after recrystallization from ethanol, followed by drying at 110°C). Anal. Found: C, 52.80; H, 5.13. $C_{24}H_{28}O_7BF_4P$ calc.: C, 52.77; H, 5.17% IR ν (OH) 3350; ν (BF₄) 1070 cm⁻¹.

[Φ_3 Sb-OH]Br: 85% yield; m.p., 200°C (decomposed).

[Φ₃Sb-OH]ClO₄: 61% yield; m.p., 214°C (decomposed) (after recrystallization from ethanol). Anal. Found: C, 44.30; H, 4.54; Cl, 5.30. $C_{24}H_{28}O_{11}ClSb$ calc.: C, 44.37; H, 4.34; Cl, 5.46% IR; ν (OH) 3350; ν (ClO₄) 1100 cm⁻¹.

2.4.2. A reaction of Φ_3 Bi

When Φ_3 Bi was treated with NBS in an analogous manner to the above, white crystals of 1-bromo-2,6-dimethoxybenzene, (Φ Br) precipitated. When an excess of NBS (3.1 mmol) was used, Φ Br was obtained with a 2.1 mmol yield (m.p., 90–92°C (90–92°C) [9]).

2.4.3. Properties of $[\Phi_3 M-OH]X$

 $[\Phi_3 M-OH]ClO_4$ (M = P, As or Sb) are poorly soluble in water, partially soluble in chloroform but soluble in dichloromethane, and they can be recrystallized from alcohols, acetone or chloroform. $[\Phi_3 M-OH]Br$ (M = P, As or Sb) are very soluble in water (1 g in 4-10 ml) and alcohols, and insoluble in non-polar solvents. The

Table 3 Rate	constants for	the reaction	$\Delta r M \perp DY(evce$	$ss) \rightarrow [Ar, M-R]X$
Table 1. Kale	CONSIANTS FOR	the reaction	Ar_{\bullet} $VI + K X I e x c e$	$SSJ \rightarrow IAT_{\bullet} IVI - KIZ$

Solvent	RX	Ar ₃ M	Temperature (°C)	$k_1 (s^{-1})$	t _{1/2} (min)
MeCN BuBr	BuBr	Ф ₃ Р	61.2	Very fast	< 3
		Φ_3 As	61.2	1.20×10^{-4}	96
		Φ_3 Sb	61.2	3.77×10^{-5}	307
		Φ_3 Bi	61.2	No reaction	
		Ph_3P	61.2	$\approx 6.9 \times 10^{-6}$	≈ 1700
EtOH	BuBr	Φ_3 As	61.2	6.24×10^{-4}	18.5
		Φ_3 Sb	61.2	2.16×10^{-4}	53
	Bul	$\Phi_3^{J}As$	61.2	Very fast	< 5
		Ph ₃ As	61.2	$< 1.72 \times 10^{-5}$	> 670
$CICH_2CH_2CI (= RX)$		Φ_3 As	83.5	1.23×10^{-4}	94
		$\Phi_{3}^{'}Sb$	83.5	Very slow	-
		Ph ₃ P	83.5	$\approx 6.8 \times 10^{-6}$	≈ 1700

^a By conductimetry for solutions containing Ar₃M (0.01 M) and RX (0.20 M); $k_{obs} = k_1[RX]$.

aqueous solutions of $[\Phi_3 M-OH]Br$ $(1 \times 10^{-2} M)$ showed pH values of 2.09 (M = P), 3.79 (M = As) and 4.75 (M = Sb).

2.5. Isolations of $\Phi_1 MO.xH_2O$ (M = As or Sb)

2.5.1. By deprotonation of $[\Phi_3 M-OH]ClO_4$

To a suspension of $[\Phi_3 \text{As-OH}]\text{ClO}_4$ (0.602 g, 1 mmol) in water (20 ml) was added 1 M aqueous sodium hydroxide (1.4 ml). The mixture was stirred at room temperature for 0.5 h to give a clear solution. It was extracted with chloroform (40 ml), from which on evaporation was obtained $\Phi_3 \text{AsO.H}_2 \text{O}$ with a 94% yield (m.p., 215–219°C). Anal. Found: C, 55.79; H, 5.77. $C_{24}H_{29}O_8 \text{As calc.: C, 55.39; H, 5.62\%; IR: } \nu(\text{OH})$ 3350 broad cm⁻¹.

An analogous treatment of $[\Phi_3 \text{Sb-OH}]\text{ClO}_4$ (0.650 g, 1 mmol) gave crystals of $\Phi_3 \text{SbO}_.3\text{H}_2\text{O}$ with a 95% yield (m.p., 195°C (decomposed) (after recrystallization from toluene)). Anal. Found: C, 47.48; H, 5.17. $\text{C}_{24}\text{H}_{33}\text{O}_{10}\text{Sb}$ calc.: C, 47.78; H, 5.51% IR: $\nu(\text{OH})$ 3600 very sharp cm⁻¹.

2.5.2. By reaction of $\Phi_3 M$ with hydrogen peroxide

To a suspension of Φ_3 As (0.486 g, 1 mmol) in acetone (5 ml) was added 30% aqueous hydrogen peroxide (0.15 ml, 1.5 mmol). The mixture was stirred at room temperature for 1 h to give a clear solution. Volatile materials were removed under reduced pressure, and the residual solid was crystallized from chloroform as above to give Φ_3 AsO. H_2 O with a 74% yield.

An analogous treatment of Φ_3 Sb (0.800 g, 1.5 mmol) gave crystals of Φ_3 SbO_.3H₂O with a 96% yield.

When Φ_3 Bi was treated in an analogous manner, it was recovered with a 76% yield.

2.6. A reaction of $\Phi_1 PO$ with N-bromosuccinimide

To a solution of Φ_3 PO (0.916 g, 2 mmol) in acetone (20 ml) was added dropwise a solution of NBS (8 mmol) in acetone (15 ml). The mixture was stirred at room temperature for 1 h, and it was cooled to -30° C to give white precipitates of Φ'_3 PO.H₂O ($\Phi' = 3$ -Br-2,6-(MeO)₂C₆H₂) with a 97% yield (m.p., 186–188°C). Anal. Found: C, 40.11; H, 3.55. C₂₄H₂₆O₈Br₃P calc.: C, 40.42; H, 3.68%. Φ'_3 PO.H₂O is insoluble in water, and the water molecule in the crystals could not be removed on heating at 120°C for 48 h.

2.7. Reactions of $[\Phi_3 M-OH]ClO_4$ (M=P, As or Sb) with amines

A mixture of $[\Phi_3P-OH]ClO_4$ (0.559 g, 1 mmol) and triethylamine (0.4–0.8 ml, an excess) in 2-propanol (15 ml) was heated to dissolve. On cooling to $-30^{\circ}C$, it afforded white crystals of 1:1 adduct $[\Phi_3P-OH-$

NEt₃ [ClO₄ with an 88% yield. The analytical sample was obtained by recrystallization from 2-propanol (m.p., 202°C (decomposed)). Anal. Found: C, 54.60; H, 6.74; N, 2.08; Cl, 5.46. $C_{30}H_{43}O_{11}ClNP$ calc.: C, 54.59; H, 6.57; N, 2.12; Cl, 5.37% IR: $\nu(ClO_4)$ 1100 cm⁻¹.

In analogous manners to the above, the following adducts were obtained.

- [Φ₃P-OH-NHEt₂]ClO₄: 89% yield; m.p., 188°C (decomposed). Anal. Found: C, 53.04; H, 6.33; N, 2.22; Cl, 5.62. $C_{28}H_{39}O_{11}CINP$ calc.: C, 53.21; H, 6.22; N, 2.22; Cl, 5.61%.
- [Φ_3 P-OH-NBu₃]ClO₄: 75% yield; m.p., 180–182°C. Anal. Found: C, 57.79; H, 7.60; N, 1.83; Cl, 4.48. C₃₆H₅₅O₁₁ ClNP calc.: C, 58.10; H, 7.45; N, 1.88; Cl, 4.76%.
- $[\Phi_3 P-OH-NH_2^{\ i}Bu]ClO_4$: 74% yield; m.p., 216°C (decomposed).
- [Φ_3 P-OH-NH₂^tBulClO₄: 78% yield; m.p., 236°C (decomposed). Anal. Found: C, 53.10; H, 6.47; N, 2.22; Cl, 5.64. C₂₈H₃₉O₁₁ ClNP calc.: C, 53.21; H, 6.22; N, 2.22; Cl, 5.61%.
- [Φ_3 P-OH-piperidine]ClO₄: 81% yield; m.p., 182°C (decomposed).
- [Φ_3 P-OH-2,4,6-collidine]ClO₄: 90% yield; m.p., 183–191°C. Anal. Found: C, 56.21; H, 5.97; N, 1.81; Cl, 5.16. C₃₂H₃₉O₁₁ClNP calc.: C, 56.51; H, 5.78; N, 2.06; Cl, 5.21%.
- [Φ_3 P-OH-4-picoline]ClO₄: 91% yield; m.p., 156°C (decomposed). Anal. Found: C, 55.22; H, 5.55; N, 1.98; Cl, 5.23. C₃₀H₃₅O₁₁ClNP calc.: C, 55.26; H, 5.41; N, 2.15; Cl, 5.44%.
- [Φ_3 P-OH-3-picoline]ClO₄: 87% yield; m.p., 159°C (decomposed).
- [Φ₃P-OH-N-methylimidazole]ClO₄: 98% yield; m.p., 161°C (decomposed). Anal. Found: C, 52.29; H, 5.53; N, 4.17; Cl, 5.63. $C_{28}H_{34}O_{11}ClNP$ calc.: C, 52.46; H, 5.35; N, 4.37; Cl, 5.53%.
- [(Φ_3 P-OH)₂-NMe₂CH₂CH₂NMe₂](ClO₄)₂: 54% yield; m.p., 231°C (decomposed). Anal. Found: C, 52.22; H, 6.06; N, 2.28; Cl, 5.55. C₅₄H₇₂O₂₂Cl₂N₂P₂ calc.: C, 52.56; H, 5.88; N, 2.27; Cl, 5.75%.
- [Φ_3 As-OH-NEt₃]ClO₄: 76% yield; m.p., 257°C (decomposed). Anal. Found: C, 50.73; H, 6.13; N, 1.84. $C_{30}H_{43}O_{11}$ AsClN calc.: C, 51.18; H, 6.16; N, 1.19%.
- [Φ_3 As-OH-NHEt₂]ClO₄: 82% yield; m.p., 260°C (decomposed). Anal. Found: C, 49.24; H, 5.83; N, 2.08. $C_{28}H_{39}O_{11}$ AsClN calc.: C, 49.75; H, 5.82; N, 2.07%.
- [Φ_3 As-OH-NH₂¹BulClO₄: 81% yield; m.p., 257°C (decomposed). Anal. Found: C, 49.67; H, 5.80; N, 2.09. $C_{28}H_{39}O_{11}$ AsClN calc.: C, 49.75; H, 5.82; N, 2.07%.
- [Φ_3 As-OH-piperidine]ClO₄: 83% yield; m.p., 220°C (decomposed).
- $[\Phi_3 Sb-OH-NHEt_2]ClO_4$: 70% yield; m.p., 195°C (decomposed).

When $[\Phi_3 As-OH]ClO_4$ was treated with tertbutylamine, the crystals contained a small amount of the amine. When the salt was treated with 3-picoline, 4-picoline, 2,4,6-collidine, N,N,N',N'-tetramethylethylenediamine or N-methylimidazole, crystals of $[\Phi_3 As-OH]ClO_4$ were recovered with 50-80% yields.

When $[\Phi_3 \text{Sb-OH}]\text{ClO}_4$ was treated with triethylamine, isobutylamine or N-methylimidazole, the crystals contained small amounts of the amines. When the salt was treated with 3-picoline, 4-picoline, 2,4,6-collidine, N, N, N', N'-tetramethylethylenediamine or piperidine, crystals of $[\Phi_3 \text{Sb-OH}]\text{ClO}_4$ were recovered with 50-80% yields.

2.8. Reactions of $[\Phi_3 P-SH]ClO_4$ with amines

Since $[\Phi_3P-SH]ClO_4$ desulfurizes in hot solutions [2], it was treated with amines in analogous manners to the above but by minimum heating; the following 1:1 adducts were obtained as crystals.

[Φ_3 P-SH-NEt₃]ClO₄: 91% yield; m.p., 129°C (decomposed). Anal. Found: C, 53.06; H, 6.43; N, 2.07. C₃₀H₄₃O₁₀ClNPS calc.: C, 53.29; H, 6.41; N, 2.07%.

[Φ_3 P-SH-NHEt₂]ClO₄: 87% yield; m.p., 157°C (decomposed). Anal. Found: C, 51.52; H, 6.08; N, 2.16. $C_{28}H_{39}O_{10}$ ClNPS calc.: C, 51.89; H, 6.06; N, 2.16%.

[Φ_3 P-SH-4-picoline]ClO₄: 88% yield; m.p., 153°C (decomposed). Anal. Found: C, 53.80; H, 5.33; N, 1.99. $C_{30}H_{35}O_{10}$ ClNPS calc.: C, 53.93; H, 5.28; N, 2.10%.

[Φ_3 P-SH-3-picoline]ClO₄: 91% yield; m.p., 125°C (decomposed). Anal. Found: C, 53.79; H, 5.38; N, 1.99. $C_{30}H_{35}O_{10}$ ClNPS calc.: C, 53.93; H, 5.28; N, 2.10%.

[Φ₃P-SH-2,4,6-collidine]ClO₄: 93% yield; m.p., 157°C (decomposed). Anal. Found: C, 55.15; H, 5.65; N, 2.04. $C_{32}H_{39}O_{10}ClNPS$ calc.: C, 55.21; H, 5.65; N, 2.01%.

When $[\Phi_3 P-SH]ClO_4$ was treated with 1BuNH_2 , 1BuNH_2 , N,N,N',N'-tetramethylethylenediamine, piperidine and N-methylimidazole, crystals of $\Phi_3 PS$ were obtained with 90-95% yields.

2.9. Reactions of $\Phi_1 MO$ to give $[\Phi_1 M-OR]X$

2.9.1. Reactions of Φ_3 PO with dialkyl sulfates

A mixture of $\Phi_3 PO$ (0.458 g, 1 mmol) and dimethyl sulfate (0.4 ml) was heated at 55°C for 1 h. It was dissolved in 2-propanol (3 ml), and 1 M aqueous sodium perchlorate (2 ml) was added to give white precipitates. The suspension was warmed to give an almost clear solution, a small amount of insoluble material was removed by filtration, and the filtrate was cooled to $-30^{\circ}C$ to give white crystals of $[\Phi_3 P-OMe]ClO_4$ with an 89% yield (m.p., not observed below 240°C after recrystallization from ethanol). Anal. Found: C, 52.19; H, 5.27. $C_{25}H_{30}O_{11}ClP$ calc.: C, 52.41; H, 5.28%.

In an analogous manner to the above, $[\Phi_3P-OEt]ClO_4$ was obtained with an 89% yield (m.p., not observed below 240°C after recrystallization from

ethanol). Anal. Found: C, 52.90; H, 5.54. C₂₆H₃₂O₁₁ClP calc.: C, 53.20; H, 5.50%.

2.9.2. Reactions of $\Phi_3 MO.xH_2O$ with alkyl iodides

The crystals of Φ_3 PO (0.458 g, 1 mmol) was heated in neat butyl iodide (5 ml) at 80°C for 1 h to give the crystals of $[\Phi_3$ P-OBu]I with an 85% yield (m.p., 130°C (decomposed)).

To a solution of Φ_3 AsO.xH₂O, prepared in situ from Φ_3 As (1 mmol) and 30% aqueous hydrogen peroxide in 2-propanol (15 ml) as above, was added ethyl iodide (0.5 ml). The mixture was stirred for 2 h at room temperature and for 10 min at 60°C to dissolve the fine precipitates, and it was cooled to -30°C to give brown crystals of $[\Phi_3$ As-OEt]I with an 80% yield (m.p., 210°C (decomposed)).

The crystals of $[\Phi_3 \text{As-OEt}]I$ (0.658 g, 1 mmol) were dissolved in 2-propanol (50 ml) at 80°C, and aqueous 1 M sodium perchlorate (2 ml) was added. The mixture was filtered while hot, and the filtrate was cooled to -30°C to give white crystals of $[\Phi_3 \text{As-OEt}]\text{ClO}_4$ with a 96% yield (m.p., 246°C (decomposed)). Anal. Found: C, 49.21; H, 5.11. $C_{26}H_{32}O_{11}\text{AsCl calc.}$: C, 49.50; H, 5.11%.

In analogous manners to the above, the following compounds were obtained.

 $[\hat{\Phi}_3 \text{As-OMe}]\text{I}$: 93% yield; m.p., 203°C (decomposed).

[Φ_3 As-OMe]ClO₄: 93% yield; m.p., 240°C (decomposed). Anal. Found: C, 48.45; H, 4.91. $C_{25}H_{30}O_{11}$ AsCl calc.: C, 48.68; H, 4.90%.

[Φ_3 P-OEt]I: 86% yield; m.p., 203°C (decomposed). [Φ_3 As-OBu]I: 80% yield; m.p., 186°C (decomposed). Anal. Found: C, 48.77; H, 5.34. C₂₈H₃₆O₇AsI calc.: C, 49.00; H, 5.29%.

 $[\Phi_3 P-OC_8 H_{17}]I$: 78% yield; m.p., 183°C (decomposed).

Attempts of recrystallization of $[\Phi_3P-OR]I$ resulted in partial decomposition to give Φ_3PO .

An analogous treatment of Φ_3 SbO_. xH_2 O with ethyl iodide resulted in $[\Phi_3$ Sb-OH]I with an 82% yield.

2.9.3. Reactions of $\Phi_3 MO.xH_2O$ with alkyl bromides

The crystals of Φ_3 PO (0.458 g, 1 mmol) was heated in neat ethyl bromide (5 ml) at 80°C for 1.5 h to give the crystals of $[\Phi_3$ P-OEt]Br with a 72% yield (m.p., 149°C (decomposed)). Attempts at recrystallization of $[\Phi_3$ P-OEt]Br resulted in partial decomposition to give Φ_3 PO.

To a solution of Φ_3 AsO, xH_2O , prepared in situ from Φ_3 As (1 mmol) and 30% aqueous hydrogen peroxide in 2-propanol (30 ml) as above, was added ethyl bromide (0.3 ml) at 60°C. The mixture was stirred for 5 h at room temperature, the volatile materials were removed under reduced pressure, and the residue was washed with benzene to give light-yellow crystals of

[Φ_3 As-OEt]Br with a 90% yield (m.p., 209°C (decomposed)).

In an analogous manner to the above, $[\Phi_3 As-OBu]Br$ was obtained with a 78% yield (m.p., 170°C (decomposed)).

These compounds were characterized by ¹H NMR and IR spectra in comparison with those of the corresponding iodides.

2.10. Reactions of $\Phi_3 M$ with $[\Phi_3 M' - CH_2 CH = CH_2]$ - $ClO_4 (M,M' = P, As \text{ or } Sb)$

Solutions containing Φ_3M and $[\Phi_3M'-CH_2CH=CH_2]ClO_4$ (1:1 mole ratio) in acetone- d_6 were heated at 80°C in a sealed NMR glass tube, and the ¹H NMR spectra were measured to detect the reaction products.

A mixture of Φ_3P and $[\Phi_3As-CH_2CH=CH_2]ClO_4$ heated for 20 h showed the formation of $[\Phi_3P-CH_2CH=CH_2]ClO_4$ and Φ_3As with 8-10% yields.

A mixture of Φ_3P and $[\Phi_3Sb-CH_2CH=CH_2]ClO_4$ heated for 10 h showed the formation of $[\Phi_3P-CH_2CH=CH_2]ClO_4$ and Φ_3Sb with 85–90% yields.

A mixture of Φ_3 As and $[\Phi_3\text{Sb-CH}_2\text{CH=CH}_2]\text{ClO}_4$ heated for 40 h showed the formation of $[\Phi_3\text{As-CH}_2\text{CH=CH}_2]\text{ClO}_4$ and $\Phi_3\text{Sb}$ with 35-40% yields.

Mixtures of Φ_3 Sb and $[\Phi_3M-CH_2CH=CH_2]ClO_4$ (M = P or As) heated for 40 h showed no new product.

3. Results and discussion

3.1. Some basic properties of tris(2,6-dimethoxyphenyl)-arsine, tris(2,6-dimethoxyphenyl)stibine and tris(2,6-dimethoxyphenyl)bismuthine ($\Phi_3 M$ (M=As, Sb and Bi) respectively)

While Φ_3 As and Φ_3 Sb prepared in the present work showed similar physical properties to those reported by Horner and Simons [4], the melting point of Φ_3 Bi was much higher than reported [4]. Φ_3 Bi is stable in hot benzene- d_6 with little decomposition during 2 days at 80°C, but it decomposes in hot alcohols to give 1,3-dimethoxybenzene. The other Φ_3 M (M = P, As or Sb) suffer air oxidation in hot alcohols.

Both Φ_3 As and Φ_3 Sb reacted very easily with common alkyl iodides (RI = MeI, EtI or BuI) in benzene at room temperature to give $[\Phi_3$ As-R]I and $[\Phi_3$ Sb-R]I respectively, but Φ_3 Bi was recovered with an 86% yield from a solution containing ethyl iodide heated at 80°C for 15 h. Φ_3 As reacted also with alkyl bromides (RBr = EtBr or BuBr) in hot benzene or methanol. Φ_3 Sb was poorly reactive with these bromides in benzene, but it reacted in hot methanol to give $[\Phi_3$ Sb-R]Br. Both Φ_3 As and Φ_3 Sb reacted even with butyl chloride in hot methanol, although the yield of $[\Phi_3$ Sb-Bu]Cl was poor after 24 h at 80°C. Since the IR spectra of

these chlorides $[\Phi_3 M-R]Cl$ show bands attributable to $\nu(OH)$, they must be hydrated, and they are quite soluble in water. Allyl chloride reacted with $\Phi_3 M$ (M = P, As or Sb) in hot ethanol, the products were very hygroscopic, and they were derived to isolate in the form of perchlorates $[\Phi_3 M-CH_2 CH=CH_2]ClO_4$. The allyl group exchange was observed between $\Phi_3 P$ and $[\Phi_3 M-CH_2 CH=CH_2]ClO_4$ (M = As or Sb) and between $\Phi_3 As$ and $[\Phi_3 Sb-CH_2 CH=CH_2]ClO_4$ in hot acetone, although the reactions were very slow at 80°C.

Comparison of the reaction rates (Table 3) indicates that, while the reactivity with butyl halides decreases in the order $\Phi_3 P > \Phi_3 As > \Phi_3 Sb > \Phi_3 Bi$, both $\Phi_3 As$ and $\Phi_3 Sb$ are much more reactive than triphenylphosphine or triphenylarsine in spite of the steric bulkiness of the Φ group.

3.2. Oxidation of tris(2,6-dimethoxyphenyl)arsine, tris(2,6-dimethoxylphenyl)stibine and tris(2,6-dimethoxylphenyl) bismuthine

Treatment of Φ_3M (M = P, As or Sb) with a stoichiometric amount of NBS in aqueous acetone resulted in the precipitation of the hydroxyonium bromides $[\Phi_3M-OH]$ Br. On the contrary, an analogous treatment of Φ_3 Bi with NBS resulted in decomposition to give 1-bromo-2,6-dimethoxybenzene (Φ Br). An analogous reaction to give ΦBr has been reported for a tin compound $Me_2\Phi_2Sn$, which was found to be a selective preparative intermediate for $\Phi X (X = Cl, Br \text{ and } I)$ [9]. The $[\Phi_3M-OH]$ Br compounds are highly soluble in water to afford acidic solutions, and treatment of $[\Phi_3M-OH]$ Br with perchloric acid in water gave precipitation of the perchlorates $[\Phi_3 M-OH]ClO_4$. Hydroxytriphenylphosphonium and arsonium salts [Ph₃M-OH]X have long been known, although the isolation of phosphonium salts is not always easy [10-13]. In contrast, it has been known that attempts to prepare compounds of types [R₃Sb-OH]X or R₃Sb(OH)X result in an oxygen bridged compound (R₃SbX)₂O, except for compounds bearing bulky substituent such as R = cyclohexyl [14,15]. Although antimony atom can adopt such a five-coordination [15], it must be improbable for $[\Phi_3Sb-OH]$ Br owing to the bulkiness of the Φ group. In fact, identical chemical shifts were observed in the ¹H NMR spectra of $[\Phi_3Sb-OH]Br$ and $[\Phi_3Sb-$ OH]ClO₄. The Brønsted acidity of [Ph₃P-OH]X is known to be stronger than that of [Ph₃As-OH]X [12]. From the pH measurements of aqueous solutions, the acidities of $[\Phi_3M-OH]$ Br were found to decrease in the order M = P > As > Sb.

Treatment of $[\Phi_3 As-OH]ClO_4$ with aqueous sodium hydroxide gave the oxide as the hydrate $\Phi_3 AsO_.xH_2O$. The elemental analyses of crystals obtained from chloroform agreed best with the monohydrate $\Phi_3 AsO_.H_2O$. $\Phi_3 PO$ [2] and $Ph_3 AsO$ [11] have been obtained also as

the hydrate, and these compounds dehydrate easily on heating. However, Φ_3 As H_2 O is quite inert to dehydration. In an analogous manner, the stibine oxide Φ₃SbO_.xH₂O could be obtained, and the elemental analyses agreed best with the trihydrate Φ_3 SbO_{.3}H₂O_. These oxides also could be obtained by the reaction of Φ_3 M with hydrogen peroxide; they are soluble in water, and treatment of the aqueous solution with perchloric acid gave $[\Phi_3M-OH]ClO_4$. The precise formulations of these oxides are not known at present. Ferguson and Macaulay [16] have shown that the crystal structure of Ph₃AsO₂H₂O comprises discrete centrosymmetric dimers with each water molecule hydrogen bonded to two oxygen atoms of triphenylarsine oxide. Since hydroxy group is smaller than bromide, a five-coordinate formulation such as Φ_3 Sb(OH)₂.2H₂O is possible for Φ₃SbO_.3H₂O. A possibility of a polymeric structure having an Sb-O-Sb bond may be disregarded owing to the bulkiness of the Φ group.

When Φ_3 Bi was treated with hydrogen peroxide in an analogous manner to above, it was recovered or it decomposed under more forcing conditions. In contrast with Φ_3 P [7], Φ_3 M (M = As or Sb) did not react with elemental sulfur.

A treatment of Φ_3 PO with an excess of NBS in acetone resulted in the bromination at the 3-position of Φ groups to give Φ_3' PO. H_2 O ($\Phi'=3$ -Br-2,6-(MeO) $_2$ C $_6$ H $_2$). In contrast with Φ_3 PO, Φ_3' PO. H_2 O is insoluble in water and does not react with perchloric acid. The weaker basicity of Φ_3' PO. H_2 O than Φ_3 PO may be explained in terms of the "buttressing effect" [17]; the presence of large bromine atom at 3-position may force the 2-methoxy methyl group to orient closer to the phosphorus atom, where the oxygen lone pairs have less possibility to interact with the phenyl ring or with phosphorus atom, resulting in the lower electron density on the P=O group.

3.3. Formation of amine adducts

Triphenylphosphine oxide has long been known to cocrystallize with a wide variety of molecules by hydrogen bonding, such as water, acids, triphenylmethanol, phenols, carboxylic acids and diaryl ureas [12,18-22]. Recently, a closely related adduct has been reported [23], where a mixture of Ph₃PO, tetrafluoroboric acid and N, N-dimethyl-o-phenylenediamine formed the 1:1:1 adduct. The crystal structure revealed that the amine is protonated on the dimethylamino group, acting as a bidentate chelating agent through two hydrogen bonds with the oxygen of Ph₃PO [23]. Related adducts with primary amines have also been reported for a macrocycle having a triarylphosphine oxide moiety [24]. We have found that $[\Phi_3 P-OH]ClO_4$ reacted with triethylamine (p $K_a = 10.72$) in 2-propanol to give their 1:1 adduct $[\Phi_3P-OH-NEt_3]ClO_4$ rather than the deprotonated product Φ_3 PO [5]. The same adduct was obtained also by the reaction of Φ_3 PO and triethylammonium perchlorate. The $\nu(OH)$ band of $[\Phi_3P-OH]ClO_4$ observed at 3340 cm⁻¹ in the IR spectrum was absent in the spectrum of the adduct, and no band attributable to ν (O-H-N) was observed in the region 3000–1800 cm⁻¹. Analogous 1:1 adducts were obtained with a wide variety of amines such as piperidine ($pK_a = 11.12$), diethylamine (p $K_a = 10.93$), tributylamine (p $K_a =$ 10.89), tert-butylamine (p $K_a = 10.45$), iso-butylamine $(pK_a = 10.41)$, 2,4,6-collidine $(pK_a = 7.43)$, N-methylimidazole (p $K_a = 6.95$), 4-picoline (p $K_a = 6.04$), 3-picoline (p $K_a = 5.76$) and N, N, N', N'-tetramethylethylenediamine (2:1 adduct). These adducts could be recrystallized from 2-propanol. While analogous amine adducts were obtained for [Φ₃As-OH]ClO₄ on treatment with excess of amines such as triethylamine, diethylamine, isobutylamine and piperidine, most of them were unstable, decomposing to $[\Phi_3 As-OH]ClO_4$ during recrystallization. [Φ₃Sb-OH]ClO₄ formed much less stable adducts with these amines, or it did not form at all. $[\Phi_3P-SH]ClO_4$ formed stable adducts with triethylamine, diethylamine, 2,4,6-collidine, 4-picoline and 3-picoline, which can be recrystallized from 2-propanol. However, the reactions of $[\Phi_3 P - SH]ClO_4$ with piperidine, tert-butylamine, isobutylamine, N-methylimidazole and N, N, N', N'-tetramethylethylenediamine resulted in an unstable adduct or deprotonated product, Φ_3 PS. Again, the ν (S-H) band of $[\Phi_3$ P-SH]ClO₄ (2510 cm⁻¹) was absent in the IR spectrum of $[\Phi_3 P_-]$ SH-NEt₃]ClO₄, and no band attributable to ν (S-H-N) was observed.

3.4. Reactions of tris(2,6-dimethoxyphenyl)phosphine oxide, tris(2,6-dimethoxyphenyl)arsine oxide and tris(2,6-dimethoxyphenyl)stibine oxide with alkyl halides

 Φ_3 PO reacted in dialkyl sulfates (Me₂SO₄ and Et_2SO_4) or in neat alkyl halides (RX = EtI, BuI, $C_8H_{17}I$ or EtBr) to give the alkoxyphosphonium salts $[\Phi_3P$ -OR]X. When the reactions with these alkyl halides were performed in 2-propanol, the yields were very poor. It was soon found that the reactions were reversible, and these halide salts partly decomposed in alcohols. However, the perchlorates $[\Phi_3 P - OR]ClO_4$ are stable in a variety of solutions, and they could be recrystallized from alcohols without hydrolysis or alcoholysis. Φ_3 AsO. H_2 O reacted with alkyl iodides and bromides even in 2-propanol to give $[\Phi_3 As - OR]X$ (RX = MeI, EtI, BuI, EtBr or BuBr) with much better yields, while it was poorly reactive with butyl chloride. The $[\Phi_3 A_{S-}]$ OR]X compounds are more stable than $[\Phi_3 P - OR]ClO_4$ in alcohols. Interestingly, preliminary experimentals showed that $[\Phi_3 As - OR]ClO_4$ decomposed more easily in acidic solutions to give [Φ₃As-OH]ClO₄ than did $[\Phi_3 P - OR]ClO_4$. $\Phi_3 SbO_3 H_2 O$ reacted with ethyl iodide in 2-propanol to give $[\Phi_3Sb-OH]I$, a product formed probably by the hydrolysis of $[\Phi_3Sb-OEt]I$ or ethyl iodide. Attempts to prepare $[\Phi_3Sb-OR]X$ by reaction of Φ_3Sb with NBS in alcohols also resulted in $[\Phi_3Sb-OH]X$.

3.5. ¹H and ¹³C NMR spectra

The ¹H NMR spectra of Φ_3 M derivatives (M = As, Sb or Bi) (Table 1) show a triplet due to 4-protons, a doublet due to 3,5-protons and a very sharp singlet due to 2,6-methoxy protons, indicating the presence of free rotation of Φ group around the C-M bonds. The 3,5proton resonance of Φ_3P derivatives appears as double doublets owing to the presence of magnetic coupling (8–9 Hz) with the phosphorus atom. The 4-proton resonance of the Φ group is the most sensitive to the change in the type of compound. It shifts to lower magnetic field in the order Φ_3M (7.11-7.14 ppm) < $\Phi_3 MO_3 H_2 O$ (7.23-7.35 ppm) < $[\Phi_3 M-OH$ amine]ClO₄ $(7.31-7.45 \text{ ppm}) < [\Phi_3 \text{M}-\text{R}]X (7.50-7.53)$ ppm) $< [\Phi, M-OH]X (7.50-7.59 \text{ ppm}) \approx [\Phi, M-OR]X$ (7.56–7.58 ppm). A related order has been observed for the derivatives of phosphine sulfide: Φ_3P (7.12 ppm [1]) $<\Phi_3$ PS (7.22 ppm [7]) < [Φ_3 P-SH-amine]ClO₄ < $[\Phi_3 P-SH]ClO_4$ (7.56 ppm [7]) $\approx [\Phi_3 P-SEt]ClO_4$ (7.58 ppm [7]). The analogous orders can be observed also for 3,5-protons and for 2,6-methoxy protons although less sensitive. These chemical shifts seem to reflect the positive character order of Φ_3M moieties of these compounds. In most types of compound bearing the M-O bond, these resonances are sensitive to the change in the element M. In general, the resonances are observed at a lower magnetic field in the order M = P <As < Sb, which is the reverse order expected from the electronegativity. The chemical shifts of amine protons of $[\Phi_3 M-YH-amine]ClO_4$ (Y = O or S) are also shown in Table 1 for the representative compounds, the shift order varying considerably depending on the compound. The resonances of alkoxy protons of $[\Phi_3 P - OR]X$ are observed at lower magnetic fields than those of $[\Phi_3 As -$ OR]X. While it can be explained by the more electronegative property of phosphorus atom, such an explanation cannot be applied to the chemical shifts of alkyl protons of $[\Phi_3 M-R]X$. The α -protons of $[\Phi_3 P-OR]X$ are magnetically coupled with the phosphorus atom.

The ¹³C NMR spectra of Φ_3 M derivatives (Table 2) show five resonances due to Φ -group carbon atoms. The *ipso*-carbon (C(1)) resonance of the Φ group is often too weak to be observed, and the resonance of Φ_3 P derivatives is split into a doublet with a varying coupling constant with ³¹P. The coupling constant is the smallest for Φ_3 P (20 Hz) and is very large for four-coordinated species: $[\Phi_3$ P-H]⁺ (105 Hz [7]), Φ_3 PO (115 Hz [2]), $[\Phi_3$ P-OH-NEt₃]⁺ (117 Hz) and $[\Phi_3$ P-OEt]⁺ (122 Hz). The chemical shift varies in a region between

95 ppm (for $[\Phi_3 P - H]^+$ [7]) and 120 ppm, and there seems no clear difference between cationic and neutral compounds. The *ortho*-carbon (C(2,6)) resonance of Φ_3 M derivatives is observed at a low magnetic field as 161–163 ppm owing to the presence of the methoxy substituent. The order of chemical shifts is not in accord with the order of elements. The *meta*-carbon (C(3.5))resonance of Φ_3P derivatives is also observed as doublet with a small coupling constant $(J_p = 6-10 \text{ Hz})$. The chemical shift is observed in very narrow regions depending on the type of compound: Φ_3M (128–129) ppm), $\Phi_3 MO_x H_2 O$ (131–132 ppm), $[\Phi_3 M-OH]^+$ $(136-137 \text{ ppm}), [\Phi_3 \text{M-OH-amine}]^+ (132-135 \text{ ppm}),$ $[\Phi_3 M-R]^+$ (134–136 ppm) and $[\Phi_3 M-OR]^+$ (136– 137 ppm). The 2,6-methoxy carbon resonance of Φ_3 M derivatives (M = P, As or Sb) is observed in the narrow region 56.2 ± 0.5 ppm, and the resonances of alkoxy carbon atoms of $[\Phi_3P-OR]ClO_4$ are observed as a doublet owing to the presence of magnetic coupling with the phosphorus atom.

Acknowledgment

This work was supported by the Grant-in-Aid for Scientific Research 04555207 from the Ministry of Education, Science and Culture.

References

- [1] M. Wada, S. Higashizaki and A. Tsuboi, J. Chem. Res. S, (1985) 38; J. Chem. Res. M, (1985) 467.
- [2] M. Wada, T. Fujii, S. Iijima, S. Hayase, T. Erabi and G. Matsubayashi, J. Organomet. Chem., 445 (1993) 65.
- [3] M. Wada, M. Kanzaki, H. Ogura, S. Hayase and T. Erabi, J. Organomet. Chem., 485 (1995) 127.
- [4] L. Horner and G. Simons, Phosphorus Sulfur, 14 (1983) 253.
- [5] M. Wada, H. Ohta, N. Hashizume, M. Kanzaki, K. Hirata and T. Erabi, Chem. Express, 3 (1988) 471.
- [6] M. Wada, S. Hayashi, S. Miyake, S. Hayase and T. Erabi, Chem. Express, 7 (1992) 693.
- [7] M. Wada, M. Kanzaki, M. Fujiwara, K. Kajihara and T. Erabi, Bull. Chem. Soc. Jpn., 64 (1991) 1782.
- [8] M. Wada and A. Tsuboi, J. Chem. Soc., Perkin Trans. I, (1987)
- [9] M. Wada, H. Wakamori, A. Hiraiwa and T. Erabi, Bull. Chem. Soc. Jpn., 65 (1992) 1389.
- [10] M.H. O'Brien, G.O. Doak and G.G. Long, *Inorg. Chim. Acta*, 1 (1967) 34.
- [11] G.S. Harris and F. Inglis, J. Chem. Soc. A, (1967) 497.
- [12] D. Hadzi, C. Klofutar and S. Oblak, J. Chem. Soc. A, (1968) 905.
- [13] G. Ferguson and E.W. Macaulay, J. Chem. Soc. A, (1969) 1.
- [14] G.C. Tranter, C.C. Addison and D.B. Sowerby, J. Organomet. Chem., 12 (1968) 369.
- [15] Y. Kawasaki, Y. Yamamoto and M. Wada, Bull. Chem. Soc. Jpn., 56 (1983) 145.
- [16] G. Ferguson and E.W. Macaulay, J. Chem. Soc., Chem. Commun., (1968) 1288.

- [17] H. Tomioka, K. Kimoto, H. Murata and Y. Izawa, J. Chem. Soc., Perkin Trans. I, (1991) 471, and references cited therein.
- [18] P.W. Baures, Acta Crystallogr., Sect. C47 (1991) 2715.
- [19] E.M. Arnett, E.J. Mitchell and T.S.S.R. Murty, J. Am. Chem. Soc., 96 (1974) 3875.
- [20] Von D. Thierbach and F. Huber, Z. Anorg. Allg. Chem., 477 (1981) 101.
- [21] C. Lariucci, R.H.A. Santos and J.R. Lechat, Acta Crystallogr., Sect. C42 (1986) 1825.
- [22] M.C. Etter and S.M. Reutzel, J. Am. Chem. Soc., 113 (1991) 2586, and references cited therein.
- [23] A.L. Llamas-Saiz, C. Foces-Foces, J. Elguero, P. Molina, M. Alajarin and A. Vidal, J. Chem. Soc., Chem. Commun., (1991) 1694.
- [24] P.B. Savage, S.K. Holmgren and S.H. Gellman, J. Am. Chem. Soc., 115 (1993) 7900; P.B. Savage and S.H. Gellman, J. Am. Chem. Soc., 115 (1993) 10448.